Lesson 6.4

Common Denominators and **Equivalent Fractions**

Use equivalent fractions as a strategy to add and subtract fractions.

COMMON CORE STANDARD CC.5.NF.1

Use a common denominator to write an equivalent fraction for each fraction.

1.
$$\frac{1}{5}$$
, $\frac{1}{2}$ common denominator: 10

1.
$$\frac{1}{5}$$
, $\frac{1}{2}$ common denominator: _____ 2. $\frac{1}{4}$, $\frac{2}{3}$ common denominator: _____ 3. $\frac{5}{6}$, $\frac{1}{3}$ common denominator: _____

3.
$$\frac{5}{6}$$
, $\frac{1}{3}$ common denominator:

Think: 10 is a multiple of 5 and 2. Find equivalent fractions with a denominator of 10.

4.
$$\frac{3}{5}$$
, $\frac{1}{3}$ common denominator:

4.
$$\frac{3}{5'} \frac{1}{3}$$
 common denominator: _____ **5.** $\frac{1}{2'} \frac{3}{8}$ common denominator: _____ denominator: ____ denominator: _____

6.
$$\frac{1}{6}$$
, $\frac{1}{4}$ common denominator:

Use the least common denominator to write an equivalent fraction for each fraction.

7.
$$\frac{5}{6}$$
, $\frac{2}{9}$

8.
$$\frac{1}{12}$$
, $\frac{3}{8}$

9.
$$\frac{5}{9}$$
, $\frac{2}{15}$

Problem Solving | REAL | WORLD

- fractions?
- 10. Ella spends $\frac{2}{3}$ hour practicing the piano each day. She also spends $\frac{1}{2}$ hour jogging. What is the least common denominator of the common denominator to write an equivalent fraction for each fraction.

*TEST PREP

Lesson Check (CC.5.NF.1)

- 1. Which fractions use the least common denominator and are equivalent to $\frac{9}{10}$ and $\frac{5}{6}$?
 - $igatharpoonup rac{54}{60}$ and $rac{45}{60}$
 - \bigcirc B $\frac{27}{30}$ and $\frac{25}{30}$
 - \bigcirc $\frac{29}{30}$ and $\frac{15}{30}$
 - \bigcirc $\frac{9}{16}$ and $\frac{5}{16}$

- 2. Joseph says that there is $\frac{5}{8}$ of a pumpkin pie left and $\frac{1}{2}$ of a peach pie left. Which is NOT a pair of equivalent fractions for $\frac{5}{8}$ and $\frac{1}{2}$?
 - \bigcirc $\frac{5}{8}$ and $\frac{4}{8}$
 - \bigcirc $\frac{10}{16}$ and $\frac{8}{16}$
 - $\bigcirc \frac{15}{24}$ and $\frac{8}{24}$
 - \bigcirc $\frac{50}{80}$ and $\frac{40}{80}$

Spiral Review (CC.5.OA.1, CC.5.NBT.3b, CC.5.NBT.6, CC.5.NBT.7)

- 3. Matthew had the following times in two races: 3.032 minutes and 3.023 minutes. Which sentence about these two numbers is true? (Lesson 3.3)
 - \bigcirc 3.032 > 3.023
 - **B** 3.032 = 3.023
 - © 3.032 < 3.023
 - \bigcirc 3.023 > 3.023

- **4.** Olivia's class collected 3,591 bottle caps in 57 days. On average, how many bottle caps did the class collect per day? (Lesson 2.6)
 - (A) 57
 - **B**) 62
 - **©** 63
 - **(D)** 64
- **5.** Elizabeth multiplied 0.63 by 1.8. Which is the correct product? (Lesson 4.7)
 - **A** 0.567
 - **B** 0.654
 - **(C)** 1.114
 - **(D)** 1.134

- 6. What is the value of $(17 + 8) 6 \times 2$? (Lesson 1.11)
 - **(A)** 13
 - **B**) 21
 - **©** 37
 - **D** 38