Lesson 11.5

Three-Dimensional Figures

COMMON CORE STANDARD CC.5.MD.3

Geometric measurements: understand concepts of volume and relate volume to multiplication and to addition.

Classify the solid figure. Write prism, pyramid, cone, cylinder, or sphere.

There are no bases. There is 1 curved surface. It is a

sphere

Name the solid figure.

4.

5.

6.

7.

9.

Problem Solving REAL WORLD

- 10. Darrien is making a solid figure out of folded paper. His solid figure has six congruent faces that are all squares. What solid figure did Darrien make?
- 11. Nanako said she drew a square pyramid and that all of the faces are triangles. Is this possible? Explain.

TEST

Lesson Check (CC.5.MD.3)

- 1. Luke made a model of a solid figure with 1 circular base and 1 curved surface. What solid figure did he make?
 - (A) cone
 - B cylinder
 - © sphere
 - (D) triangular pyramid

- **2.** Which of the following does NOT have any rectangular faces?
 - (A) pentagonal prism
 - (B) hexagonal pyramid
 - (C) rectangular prism
 - (D) square pyramid

Spiral Review (CC.5.NF.1, CC.5.MD.1, CC.5.G.3, CC.5.G.4)

- 3. Without measuring, how can you determine whether two sides of a polygon are congruent? (Lesson 11.4)
 - (A) If the two sides look congruent, you can assume they are congruent.
 - **B** Cut out the polygon and fold the two sides onto each other. If the sides match up, you can assume they are congruent.
 - C Cut out the polygon and fold two of the angles onto each other. If the angles match up, you can assume the sides are also congruent.
 - (D) It is not possible to determine whether two sides of a polygon are congruent without measuring.
- 5. Latasha made 128 ounces of punch. How many cups of punch did Latasha make? (Lesson 10.2)
 - (A) 4 cups
 - B 8 cups
 - (C) 16 cups
 - 32 cups

- **4.** James has $4\frac{3}{4}$ feet of rope. He plans to cut off $1\frac{1}{2}$ feet from the rope. How much rope will be left? (Lesson 6.6)
 - \bigcirc $\frac{1}{4}$ foot
 - (B) 3 feet
 - \bigcirc $3\frac{1}{4}$ feet
 - \bigcirc $6\frac{1}{2}$ feet

- **6.** Which of the following statements is NOT true? (Lesson 11.3)
 - (A) Some quadrilaterals are squares.
 - B All rhombuses are quadrilaterals.
 - C All squares are rectangles.
 - D Some trapezoids are parallelograms.