Lesson 11.12

Find Volume of Composed Figures

COMMON CORE STANDARD CC.5.MD.5c

Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

Find the volume of the composite figure.

1.

$$V =$$

2.

$$V =$$

3.

$$V =$$

$$V =$$

Problem Solving REAL WORLD

6. What is the volume of the composite figure below?

Lesson Check (CC.5.MD.5c)

1. Which expression represents the volume of the composite figure?

- **(A)** $(5 \times 2) (3 \times 1)$
- (\mathbf{B}) 5 × 2 × 3
- \bigcirc (5 × 2 × 3) (4 × 2 × 1)
- \bigcirc 4 × 2 × 1

2. Suppose you take the small prism and stack it on top of the larger prism. What will be the volume of the composite figure?

- 432 cubic inches
- 648 cubic inches
- (C) 1,080 cubic inches
- (D) 1,512 cubic inches

Spiral Review (CC.5.NF.6, CC.5.NF.7c, CC.5.MD.5a, CC.5.MD.5b)

- 3. Jesse wants to build a wooden chest with a volume of 8,100 cubic inches. The length will be 30 inches and the width will be 15 inches. How tall will Jesse's chest be? (Lesson 11.11)
 - (A) 18 in.
 - (B) 30 in.
 - (C) 270 in.
 - **(D)** 540 in.
- 5. Adrian's recipe for cranberry relish calls for $1\frac{3}{4}$ cups of sugar. He wants to use $\frac{1}{2}$ that amount. How much sugar should he use? (Lesson 7.9)
 - (A) $1\frac{1}{4}$ cups (C) $\frac{7}{8}$ cup (B) $1\frac{1}{6}$ cups (D) $\frac{1}{2}$ cup

4. What is the volume of the rectangular prism? (Lesson 11.9)

- \bigcirc 14 in.³
- \bigcirc 45 in.³
- **(B)** 27 in.³
- **(D)** 54 in. 3
- 6. Joanna has a board that is 6 feet long. She cuts it into pieces that are each $\frac{1}{4}$ foot long. Which equation represents the number of pieces she cut? (Lesson 8.5)

- (A) $6 \div \frac{1}{4} = n$ (C) $\frac{1}{4} \div 6 = n$ (B) $6 \div 4 = n$ (D) $\frac{1}{4} \div \frac{1}{6} = n$